distances between the sulphurs and these atoms are all greater than $4 \AA$. The mercuritetraiodide ion is approximately tetrahedral.

Table 3. Bond lengths and angles in the mercuritetraiodide ion and their standard deviations

Bonds		σ		σ
$\mathrm{Hg}-\mathrm{I}(1)$	$2 \cdot 80$ A	$0.01 \AA$	$\mathrm{Hg}-\mathrm{I}(3)$	$2.69 \AA 0.01 \AA$
$\mathrm{Hg}-\mathrm{I}(2)$	2.73	0.02	$\mathrm{Hg}-\mathrm{I}(4)$	$2.68 \quad 0.02$
Angles		σ		σ
$\mathrm{I}(1)-\mathrm{Hg}-\mathrm{I}(2)$	$105 \cdot{ }^{\circ}$	$0 \cdot 2^{\circ}$	$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{I}(3)$	$119.8^{\circ} 0 \cdot 2^{\circ}$
$\mathrm{I}(1)-\mathrm{Hg}-\mathrm{I}(3)$	109.3	$0 \cdot 2$	$\mathrm{I}(2)-\mathrm{Hg}-\mathrm{I}(4)$	$110 \cdot 30 \cdot 3$
$\mathrm{I}(1)-\mathrm{Hg}-\mathrm{I}(4)$	$113 \cdot 1$	$0 \cdot 2$	$\mathrm{I}(3)-\mathrm{Hg}-\mathrm{I}(4)$	$\begin{array}{ll}108.9 & 0.4\end{array}$

Lopez-Castro \& Truter (1964) have determined the conformation of the sulphonium ion to be pyramidal with carbon-sulphur distances $1.82 \AA$ and carbon-sulphur-carbon angles 103°. A test was made to ensure that there is sufficient space in the proposed structure for such an ion in each of the proposed positions.

For the sulphonium ion about $\mathbf{S}(1)$, an orientation was found for which the minimum carbon-iodine distance was $3.5 \AA$; for the sulphonium ion about $T(1)$, an orientation was found for which the minimum car-bon-iodine distance was $3.7 \AA$, and for an orientation
about $T(2)$ the minimum carbon-iodine distance was 3.8 Å.

This investigation showed that there is adequate space between the mercuritetraiodide ions for a sulphonium ion centered on $\mathrm{S}(1)$ and either of $T(1)$ or $T(2)$ and there is no evidence from spatial considerations against the distribution of the second ion between the two latter positions. With these orientations, the minimum distance between the carbons bonded to $\mathrm{S}(1)$ and those around either $T(1)$ or $T(2)$ is $3.5 \AA$.
The structure including the possible carbon positions is illustrated in Fig. 1.

I wish to thank Dr D. C. Phillips for suggesting the problem and his advice, Dr J. W. H. Oldham for preparing the compound and Sir Lawrence Bragg and Professor R. King for their interest and encouragement. I am indebted to the Managers of the Royal Institution for financial support and to Drs J. J. Daly, G. A. Mair, V. R. Sarma and Mr R. M. Simmons for the use of computer programs.

References

Lopez-Castro, A. \& Truter, M. R. (1964). Acta Cryst. 17, 465.

Rây, P. C. \& Adhikary, N. (1930). J. Indian Chem. Soc. 7, 297.

Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273.

The Crystal and Molecular Structure of 2,5-Dimethyl-7,7-dicyanonorcaradiene*

By Charles J. Fritchie, Jr. \dagger
Central Research Department, Experimental Station, E.I. du Pont de Nemours and Company, Wilmington, Delaware, U.S.A.

(Received 1 March 1965)
The substituted norcaradiene, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}$, crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with four molecules in a cell having $a=11 \cdot 044, b=7 \cdot 126, c=12 \cdot 113 \AA$. Copper $K \alpha$ diffraction data measured by scintillation counter gave an R of 3.9% when fit by least squares to a model including σ bonds. The molecule has nearly exact C_{5} symmetry; the cyclopropane ring is inclined at about 73° to the approximately planar C_{6} ring. Bonds adjacent to the C_{3} ring are shortened by $0.02-0.03 \AA$ from corresponding unstrained values; cyclopropane C-C bonds are $1 \cdot 558,1 \cdot 553$, and $1 \cdot 500 \AA$. The experimental electron density is matched much better by a 'bent' bond cyclopropane model than the straight-bond model; the angle of bending is roughly 20°.

Introduction

Cyclopropane rings present opportunities to study carbon in unusual hybridization states for which little accurate geometrical information is available. The present study was undertaken with the additional purpose of

* Contribution No. 1071.
\dagger Present address: Department of Chemistry, Tulane University, New Orleans, La., U.S.A.
confirming the bicyclic nature of the material $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}$, one of the simplest containing the norcaradiene skeleton (Ciganek, 1965).

Experimental data

Clear, block-like crystals of $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}, 2,5$-dimethyl-7,7-dicyanonorcaradiene, and of $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}, 7,7$-dicyanonorcaradiene, were supplied by Dr Ciganek. On Cu
$K \alpha$ Weissenberg and Mo $K \alpha$ precession photographs both showed reciprocal lattice extinctions characteristic of space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$. The unit-cell constants of $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}$ were determined from $\mathrm{Cu} K \alpha$ rotation and Weissenberg photographs to be $a=11.07 \pm 0.05$, $b=5.76 \pm 0.02, c=12.16 \pm 0.05 \AA$. The dimethyl compound had a somewhat more equidimensional habit and was chosen for a complete study. A zero layer [100] Weissenberg photograph made in a special lattice-constant camera (Fritchie, 1966a) with $\mathrm{Cu} K \alpha$ radiation gave $b=7.126 \pm 0.001, c=12.113 \pm 0.001 \AA$. The a-axis dimension of $11.044 \pm 0.002 \AA$ was measured on a Picker goniometer with $\mathrm{Cu} K \alpha$ radiation. Wavelengths used in the calculations were 1.54050 and $1.54434 \AA$ for $\mathrm{Cu} K \alpha_{1}$ and $\mathrm{Cu} K \alpha_{2}$. Calculated densities are 1.21_{3} g.cm ${ }^{-3}$ and $1.186 \mathrm{~g} . \mathrm{cm}^{-3}$ for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}$ and $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}$, respectively, assuming four molecules per cell in each case.
A polyhedral specimen about 0.4 mm in diameter was chosen for intensity collection. The crystal was found to sublime rather rapidly; after collection of the $h 0 l, 0 k l$, and $h k 0$ data the crystal was coated with a layer of Krylon acrylic ester resin about 0.05 mm thick. This plastic was essentially amorphous and completely halted the sublimation without excessively increasing the background. All intensity data were collected with a Picker scintillation counter, using a pulse-height discriminator symmetrically set to collect about 90% of the $\mathrm{Cu} K \alpha$ pulse distribution. The generator was linevoltage stabilized; more serious intensity variation caused by crystal sublimation was eliminated by measurement of one or two standard reflections about every four hours during data collecting periods. All measurements were made with the moving-crystal moving-counter method (Furnas, 1956), scanning a range of 2° in 2θ for all reflections having $2 \theta \leq 130^{\circ}$, and an appropriately larger range for higher order reflections. All scans were made at the rate of $\frac{1}{2}^{\circ}(2 \theta)$ per minute; all reflections with $2 \theta \leq 159^{\circ}$ were measured.

A few very low order reflections required special measuring conditions to eliminate β radiation. For each reflection four 20 -second background counts were made: two at the beginning and two at the end of each scan. Nickel foil 0.0008 inch thick was used as a filter. Goniometer settings were calculated with a program by Dr C.T.Prewitt of this laboratory.

Measurement of equivalent reflections generally gave agreement in integrated intensity within 3%. Systematic variation within this limit attributable to crystal shape was noticed but considered negligible. The μr value of approximately 0.11 leads, with an estimate of 10% variation in r, to relative absorption errors of $\pm 2 \%$ in intensity. Despite a change in volume of nearly 30% by sublimation, collection of sets of ten or so data at various times showed that a consistent scale could be maintained within about $\pm 0.7 \%$ by measuring a single standard. A second standard was measured from time to time as a safeguard. The final set of data is considered by internal consistency, including the
measurement of equivalent reflections, to be accurate to within $\pm 3 \%$ in intensity.

Standard deviations (σ) were assigned to all reflections on the basis of statistical errors in the integrated peak and in the backgrounds, and of a 1% uncertainty in the (relative, time-dependent) scale factor. The 'minimum observable' level for each reflection was considered to be twice the standard deviation.

Trial structure

Expectation of a nearly flat cyclohexadiene ring in the structure led to examination of the sharpened Patterson function near the origin for closed sets of vectors of length $1.5,2.6$, and $3.0 \AA$. An arrangement was quickly found which seemed also consistent with the presence of the methyl groups and indeed the complete expected molecule. This orientation agreed with the early observation that the similarity in unit cells of $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}$ and $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2}$ indicated the methyl-methyl axis might be at not too large an angle to \mathbf{b}. Despite this early partial success the Harker sections and a three-dimensional Patterson function displayed on stacked polyethylene sheets were studied in vain for the placement of the molecules. Finally, realization that a large peak at $\left(0, \frac{1}{2}, 0\right)$ in the Patterson function could occur only by close overlap in the $h 0 /$ projection of oppositely oriented CN dipoles led with previous information to an $h 0 l$ trial structure. This structure refined in about 10 cycles of least-squares and difference syntheses to $R=16 \%$. Comparison of models with the $\left(\frac{1}{2}, V, W\right)$ and ($U, V, \frac{1}{2}$) Patterson sections then gave a complete structure which refined in 12 least-squares cycles from 34% to 12.5%. During this initial refinement, each reflection was weighted by $1 / \sigma$ rather than $1 / \sigma^{2}$. To stabilize the refinement process in these early cycles, calculated shifts were multiplied by partial shift factors of 0.5 to 0.7 for positional parameters and 0 to 0.1 for thermal parameters. Parameters were sometimes readjusted subjectively to maintain reasonable bond lengths and thermal parameters.

Refinement

From the moment when an essentially correct model was found reduction of R to 12.5% had been pleasingly rapid; at this point serious refinement began with the idea of driving the model to an R of $c a .2 \%$, the estimated validity of the data. Standard refinement procedures which are outlined only briefly below, applied to a data list from which all strong reflections and some apparent errors had been removed, produced convergence at $R=3.9 \%$. Examination of a difference map calculated at this stage suggested that further improvement could be made by considering bonding effects. This extended treatment is described in more detail.

Throughout the refinement with R below 12.5%, reflections were discarded when it was believed they were in error. Nearly 100 were omitted in the final
calculations, including all strong reflections reduced by extinction and some thirty or so apparent clerical errors. It should be remembered that all difference maps shown were computed with this truncated data list. The final structural model including bonding produced an R of 3.5% (compared with 3.9% for the conventional model) for the list of 1084 retained structure factors. The complete list, containing many remeasured reflections and including strong reflections corrected for extinction (Zachariasen, 1963) gave $R=3.9 \%$.

All least-squares calculations were performed with modifications of the Sparks-Gantzel-Trueblood blockdiagonal least-squares program. A thermal-ellipsoid extraction sub-routine written by R. Deverill (private communication) was used. The remaining programs were those of the author.

The initial 12.5% difference map showed seven hydrogens as well-defined peaks 0.3 to $0.7 \mathrm{e} . \AA^{-3}$ in height and gave indications of thermal anisotropy in at least the cyano groups. Inclusion of these observations in the structural model lowered R to 9.2% after three least-squares cycles. Refinement proceeded through two cycles of alternately calculating difference maps and subjecting chosen parameters to a few least-squares iterations, resulting in a model containing only the four non-methyl hydrogen atoms, but with anisotropic vibration for all heavy atoms. This model produced an R of 6.6%. Some methyl hydrogen atoms had been included in previous cycles, but were removed because of difficulty in placing all six. Sections in the expected methyl planes of a difference map computed at this stage are shown in Fig. 1. These maps indicate librating rather than fixed or freely rotating methyl groups. Tetrahedral methyl groups were added to the model with B 's of 3.0 as for the other hydrogen atoms. Refinement of the heavy atom parameters through two cycles lowered R to 4.9%. Six further cycles in which all hydrogen positional and (isotropic) thermal parameters were also allowed to vary produced convergence at an R-value of 3.9%.

A difference map calculated at this stage showed 15 peaks larger than about $0.08 \mathrm{e} . \AA^{-3}$; fourteen of these were in or near positions expected for interatomic bonds. Three sections of this difference map: (a) in the mean plane of the C_{6} ring; (b) through the dicyanomethylene group; and (c) in the C_{3} plane, are shown in Fig.2. No reflections suffering from noticeable extinction were used in preparing this map; most positional and thermal parameters seem to have been estimated accurately by the least-squares procedure.

Fig. 1. Sections of an early difference map in the planes of (left) the $C(9)$ and (right) the $C(8)$ methyl hydrogen atoms. Contours are drawn at intervals of $0.05 \mathrm{e} . \AA^{-3}$ with the zero contour dashed.

At this stage considerable theoretical work was done, following McWeeny's procedures (McWeeny, 1951, 1952, 1953, 1954) and reported elsewhere (Fritchie, 1966b), which showed that the observed peaks were of the magnitude expected for interatomic σ bonds. The π bonds, which have lower densities, were not observed

Fig.2. Sections of difference maps computed using various assumptions about bonding in the molecule. In all sections contours are drawn at $0.05 \mathrm{e} . \AA^{-3}$ intervals with the zero contour dashed and negative contours dotted. Sections (a)(c) show the result of refinement using the usual spherically symmetric form factors. Sections $(d)-(f)$ are parts of a map in which bond form factors were used for all bonds except the three in the cyclopropane ring. Section (g) shows the cyclopropane ring under the assumption of normal bonds of cylindrical symmetry; section (h) shows the same ring when a 'bent' bond model is used in calculating the F_{c} 's. Straight lines labelled X and Y are traces of planes of constant x and y, respectively.
and are not further considered in this discussion. The Sparks-Gantzel-Trueblood program was extensively modified so that the form factor for each atom (excluding hydrogen) is given by $f_{\mathrm{e}}=f_{\text {core }}+\sum \frac{1}{2} q_{\text {bond }} f_{\text {bond }}$ $\exp \left\{-2 \pi \mathrm{iS} .\left(\mathbf{R}_{\mathrm{bond}} / 2\right)\right\}$. Here, f_{e} is McWeeny's effective atomic form factor, $f_{\text {core }}$ is the perhaps asymmetric core form factor representing scattering by all non-valence electrons and a partial valence shell, and $f_{\text {bond }}$ is the normalized two-center scattering integral, $\int \varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) \exp (-2 \pi \mathbf{i S} . \mathbf{r}) d \mathbf{r} / \int \varphi_{i}(\mathbf{r}) \varphi_{j}(\mathbf{r}) d \mathbf{r}$, where the center of the bond is chosen as origin for \mathbf{r}. Assuming each σ bond has the form $\Psi_{i j}=x_{i} \varphi_{i}+x_{j} \varphi_{j}, q_{\text {bond }}$ is given by $2 S_{i j} x_{i} x_{j}$. $\mathbf{R}_{\text {bond }}$ is the vector between the atom under consideration and that at the other end of the bond (or some equivalently defined point in the case of a 'bent' bond. $S_{i j}$ is the overlap integral $\int \varphi_{i}(\mathbf{r})$ $\varphi_{j}(\mathbf{r}) d \mathbf{r}$ and should not be confused with the scattering vector S. Finally, the summation is taken over all bonds adjoining the atom in question. The bond form factor, $f_{\text {bond }}$, is axially rather than spherically symmetric (for straight bonds) and in the program is approximated by $f^{\|} \cos ^{2} \xi+f \perp \sin ^{2} \xi$, where ξ is the angle between \mathbf{S} and the bond. This approximation, which is discussed more fully by Fritchie (1965b) introduces errors as large as 0.04 in $f_{\text {bond }}$. The errors are reduced by thermal averaging of the electron density, however, and are not serious in the present case. It may also be remarked here that $f_{\text {bond }}$ differs in general for each of a set of symmetry-equivalent atoms, and that calculationally it should be treated in a manner similar to the ellipsoidal temperature factor.

The net effect of the procedure described here is to divide the electron density in each bond equally between the two atoms forming the bond, and to treat all
the electron density thus associated with each given atom as a part of that atom in all calculations. In particular, the derivative of a structure factor with respect to a given atom includes the effect of its associated bonding electrons, so that the number of parameters to be artificially reset after each cycle is minimized. Under the approximations used here, only \mathbf{R} for each bond is readjusted between cycles.
Because of anticipated bent bonds in the cyclopropane ring, initial calculations of structure factors with inclusion of bonds omitted these three bonds. Carbonhydrogen bonds were assumed to be described by the form factor for the hydrogen atom given by McWeeny (1951), i.e. by the conventional treatment of hydrogen atoms. The bond charge or population factor, q was taken as 0.863 for all bonds. This value is appropriate for a $\mathrm{C}_{s p^{2}-}-\mathrm{C}_{s p^{2}}$ bond $1.47 \AA$ in length and does not differ greatly for other bonds. The form factor appropriate for such a bond was used for all σ bonds, $\mathrm{C}-\mathrm{N}$ as well as $\mathrm{C}-\mathrm{C}$. Initially $f_{\text {core }}$ for each atom was isotropic and was simply $f_{1 s}$ plus enough of $f_{\text {valence }}$ (McWeeny, 1951) to give the appropriate charge of 6 or 7. Later $f_{\text {core }}$ for atoms 2 and 5 was changed to the more appropriate $f: \cos ^{2} v+f \perp \sin ^{2} v$ (McWeeny, 1951, 1954), where v represents the angle between S and the $2 p_{z}$ orbital not used in σ bonding; little if any significant change was noted. Form factors $f_{1 s}$ and $f_{\text {valence }}$ (isotropic), together with $f{ }^{\prime}$ val and $f \perp_{\text {val }}$ for $s p^{2}$ carbon, are given in Table 1 for convenience; these were derived from data in McWeeny's papers. The bond form factor used is also included. The f | table differs from McWeeny's, presumably because of arithmetic errors in his hand-calculated values. Initial calculations with bond form factors used the scale and temperature factors

Table 1(a). Partial atomic form factors

$\sin \theta / \lambda\left(\mathrm{a.u} .^{-1}\right)^{*}$	$f_{1 s}(\mathrm{C})$
0.000	2.000
0.025	1.997
0.050	1.988
0.075	1.973
0.100	1.952
0.125	1.926
0.150	1.895
0.175	1.859
0.200	1.818
0.250	1.727
0.300	1.624
0.400	1.400
0.500	1.175
0.600	0.966

$f_{\text {val }}(\mathrm{C})$	$f_{1 s}(\mathrm{~N})$	$f_{\text {val }}(\mathrm{N})$
4.000	2.000	5.000
3.006	1.998	4.824
3.283	1.991	4.383
2.608	1.980	3.723
1.850	1.965	2.925
1.211	1.946	2.218
0.734	1.922	1.567
0.396	1.895	0.997
0.180	1.865	0.642
-0.016	1.795	0.248
-0.058	1.715	-0.018
-0.033	1.533	-0.069
-0.005	1.339	-0.023
0.007	1.148	0.008

$f^{\prime}{ }_{s P 2}(\mathrm{C})$	$f^{{ }^{1}}{ }_{s P_{2}(\mathrm{C})}$
4.705	4.705
4.555	4.580
4.150	4.238
3.623	3.789
3.051	3.280
2.570	2.835
2.211	2.483
1.957	2.214
1.789	2.017
1.610	1.772
1.516	1.621
1.349	1.391
1.159	1.175
0.964	0.971

Table 1(b). Bond form factors used

$\sin \theta / \lambda\left(\AA^{-1}\right)$	$f_{b}{ }^{\text {U1 }}$
0.00	1.000
0.05	0.979
0.10	0.918
0.15	0.818
0.20	0.688
0.25	0.539
0.30	0.388

$f_{b}{ }^{\perp}$
1.000
0.960
0.848
0.691
0.520
0.362
0.236

$f_{b}{ }^{\prime}$	$f_{b}{ }^{\perp}$
0.250	0.145
0.137	0.086
0.054	0.051
0.000	0.030
-0.029	0.018
-0.040	0.010
-0.032	0.001

* 1 a.u. $=0.5292 \AA$.

Table 2. Observed and calculated structure factors
Each group of four columns contains in order $l, 100\left|F_{o}\right|, 100\left|F_{c}\right|$, and α, and is headed by values of h and k common to the group. Negative numbers in the $\left|F_{o}\right|$ column are minimum observable values of unobserved reflections. Asterisks mark reflections omitted from the final least-squares calculations.

Table 2 (cont.)
given by the previous cycle, although theoretical models had shown that thermal parameters would decrease by about 10% in changing from the usual kind of model to a model making specific allowance for σ bonds. The first R value was 7.3% rather than 3.9%, chiefly because of these anticipated thermal errors. Convergence of this model was reached in three cycles at 3.5%. Sections of the corresponding difference map are given in Fig. $2(d)$ through (f), paralleling (a) through (c). Peaks in the bonding regions have essentially been removed, although some positive areas remain in both bonding and core areas. The standard deviation in ϱ, estimated both by assuming σ_{F} is constant (0.3 e) and by assuming $\sigma_{F}=0.03|F|$, is approximately $0.02-0.03$ e. \AA^{-3} (Lipson \& Cochran, 1957). The estimated root mean square $|\Delta \varrho|$ in the final difference map, in areas away from atoms, is ca. $0.025 \mathrm{e} . \AA^{-3}$. Thus, although the original peaks of $c a .0 .1-0.15$ e. \AA^{-3} must be considered significant, the variation remaining after subtraction of bonds is scarcely more than random and can be considered negligible in comparison with the largest remaining errors - those near methyl hydrogen atoms (see below). It will be noted that although the $\mathrm{C}-\mathrm{N}$
bond peaks originally were not between atomic cores, the new difference map shows no holes. It may be assumed that small errors were present in the comparatively large thermal parameters of these atoms, and that these have now been corrected.

The electron density in the cyclopropane ring had been changed but not removed by the preliminary bond refinement; the effect of including these bonds remained to be seen. Inclusion of these bonds, using the same approximations as for the others, gave $R=4.2 \%$. dropping in two least-squares cycles to 3.9%. A difference map computed at this stage showed a large hole in the center of the ring [Fig. $2(\mathrm{~g})$]. It was decided to make an attempt to allow for 'bent' bonds, by directing each half of a cyclopropane bond outward by the calculated amount of 22° (Coulson \& Moffitt, 1949). This procedure involves a further approximation. The sum of two half-bond form factors directed away from the bond axis is not the Fourier transform of such a 'bent' bond, but the electron density is essentially properly located by this procedure and further refinements would seem to go beyond the limits of the experimental data. Inclusion of these 'bent' bonds gave the difference
map shown in Fig. $2(h)$ and an R value of 3.5% in two cycles using, as in the straight-bond case, parameters from the first ll-bond calculation. To see if further refinement would relatively benefit the straight-bond model, each of the two models was allowed to vary for three further cycles. Essentially no change occurred; all shifts were extremely small, averaging about 0.1σ.

At the conclusion of the refinement, all reflections affected to the extent of 0.3% were corrected for extinction by the formula $\left|F_{\text {corr }}\right|^{2}=\left|F_{\mathrm{obs}}\right|^{2}\left(1+2.00 \times 10^{-5}\right.$ $\beta I_{\text {obs }}$) (Zachariasen, 1963). All reflections which had been omitted during the final refinement cycles were re-examined and corrected if necessary. All observed and calculated structure factors are listed in Table 2, those marked with an asterisk having been omitted

	Table 3. Positional parameters and their standard deviations		
Atom	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$
C(1)	$0 \cdot 27292$ (15)	0.07556 (26)	$0 \cdot 28453$ (12)
C (2)	0.36399 (15)	-0.05160 (25)	0.33288 (14)
C(3)	$0 \cdot 40902$ (16)	-0.01259 (25)	0.43422 (16)
C(4)	$0 \cdot 37764$ (15)	$0 \cdot 15791$ (26)	0.49337 (16)
C(5)	$0 \cdot 30138$ (15)	$0 \cdot 28862$ (25)	0.45278 (15)
C(6)	$0 \cdot 24087$ (14)	$0 \cdot 25214$ (24)	0.34540 (14)
C(7)	$0 \cdot 14677$ (13)	$0 \cdot 08934$ (23)	$0 \cdot 34082$ (11)
C(8)	$0 \cdot 40156$ (23)	-0.21785 (35)	$0 \cdot 26500$ (18)
C(9)	$0 \cdot 27202$ (20)	$0 \cdot 46913$ (28)	$0 \cdot 50984$ (19)
C(10)	$0 \cdot 04356$ (16)	$0 \cdot 11317$ (25)	$0 \cdot 27004$ (14)
C(11)	$0 \cdot 12422$ (14)	-0.01452 (23)	$0 \cdot 44035$ (12)
N (12)	-0.03928 (17)	$0 \cdot 13352$ (28)	$0 \cdot 21336$ (14)
N(13)	$0 \cdot 10697$ (16)	-0.09444 (27)	$0 \cdot 52114$ (12)
H(14)	$0 \cdot 2668$ (18)	$0 \cdot 0833$ (31)	$0 \cdot 2134$ (15)
H(15)	$0 \cdot 4366$ (22)	-0.1833 (38)	$0 \cdot 1982$ (20)
H(16)	$0 \cdot 3483$ (52)	-0.3162 (72)	0.2328 (48)
H(17)	$0 \cdot 4723$ (24)	-0.2642 (46)	0.2976 (20)
H(18)	$0 \cdot 4591$ (18)	-0.0933 (32)	$0 \cdot 4641$ (18)
H(19)	$0 \cdot 4145$ (20)	$0 \cdot 1903$ (30)	0.5665 (19)
H(20)	$0 \cdot 3096$ (23)	$0 \cdot 4917$ (33)	0.5748 (19)
H(21)	$0 \cdot 1859$ (27)	$0 \cdot 4589$ (45)	0.5233 (22)
H(22)	$0 \cdot 3020$ (30)	$0 \cdot 5652$ (55)	0.4724 (28)
H(23)	$0 \cdot 2162$ (19)	$0 \cdot 3624$ (26)	$0 \cdot 3086$ (16)

Table 5. Final thermal-ellipsoid principal axes Caps denote unit vectors

Atom	$\left\|\mathbf{B}_{i}\right\|$	$\hat{\mathbf{B}}_{i} \cdot \hat{\mathbf{a}}$	$\hat{\mathbf{B}}_{i} \cdot \hat{\mathbf{b}}$	$\hat{\mathbf{B}}_{i} \cdot \hat{\mathbf{c}}$
C(1)	$4 \cdot 18$	0.481	0.761	0.435
	$2 \cdot 97$	0.685	-0.636	$0 \cdot 356$
	$2 \cdot 61$	-0.548	-0.127	$0 \cdot 827$
C(2)	$4 \cdot 65$	0.504	$0 \cdot 564$	0.654
	$3 \cdot 45$	-0.040	-0.741	$0 \cdot 670$
	$2 \cdot 58$	-0.862	$0 \cdot 364$	0.351
C(3)	$4 \cdot 88$	-0.234	0.218	0.948
	$3 \cdot 78$	-0.462	-0.882	0.088
	$2 \cdot 79$	0.855	-0.418	0.307
C(4)	$5 \cdot 21$	-0.472	$0 \cdot 125$	$0 \cdot 872$
	3.69	0.147	-0.965	$0 \cdot 218$
	$2 \cdot 83$	0.869	0.231	0.438
C(5)	$4 \cdot 22$	-0.339	0.275	0.900
	$3 \cdot 54$	0.548	-0.719	0.426
	$2 \cdot 82$	0.764	0.638	0.093
C(6)	3.94	-0.124	$0 \cdot 556$	$0 \cdot 822$
	$3 \cdot 16$	0.966	-0.122	$0 \cdot 228$
	$2 \cdot 65$	-0.227	-0.822	0.522
C(7)	$3 \cdot 32$	0.003	0.930	$0 \cdot 367$
	$2 \cdot 78$	-0.906	-0.152	$0 \cdot 394$
	$2 \cdot 53$	0.423	-0.334	0.843
C(8)	$7 \cdot 29$	0.800	0.582	$0 \cdot 143$
	$5 \cdot 12$	$0 \cdot 132$	-0.404	0.905
	$3 \cdot 10$	-0.585	0.706	0.400
C(9)	$6 \cdot 46$	-0.427	-0.274	$0 \cdot 862$
	$4 \cdot 92$	0.903	-0.164	$0 \cdot 396$
	$3 \cdot 29$	0.033	0.948	$0 \cdot 317$
C(10)	$4 \cdot 21$	-0.674	-0.414	0.612
	$3 \cdot 58$	-0.219	0.903	$0 \cdot 368$
	$2 \cdot 74$	0.706	-0.114	0.699
C(11)	$3 \cdot 56$	0.457	-0.887	0.063
	$2 \cdot 88$	0.861	0.459	$0 \cdot 222$
	$2 \cdot 83$	-0.213	-0.040	0.976
N(12)	$6 \cdot 39$	-0.690	-0.028	0.723
	$5 \cdot 39$	$0 \cdot 111$	0.983	$0 \cdot 144$
	3.04	0.715	-0.180	0.675
N(13)	$6 \cdot 14$	-0.737	0.675	0.023
	$4 \cdot 08$	0.561	0.592	0.579
	$3 \cdot 16$	-0.377	-0.439	$0 \cdot 815$

Table 4. Thermal parameters and their standard deviations

Atom	B_{11} or B	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	$0 \cdot 00646$ (11)	0.01806 (29)	0.00504 (9)	$0 \cdot 00265$ (34)	$0 \cdot 00156$ (18)	$0 \cdot 00254$ (28)
C(2)	$0 \cdot 00638$ (12)	$0 \cdot 01831$ (32)	$0 \cdot 00659$ (10)	$0 \cdot 00393$ (35)	$0 \cdot 00248$ (20)	$0 \cdot 00194$ (32)
C(3)	$0 \cdot 00640$ (12)	0.01803 (34)	$0 \cdot 00798$ (12)	$0 \cdot 00190$ (36)	-0.00189 (22)	$0 \cdot 00205$ (36)
C(4)	$0 \cdot 00694$ (13)	$0 \cdot 01808$ (34)	$0 \cdot 00799$ (12)	-0.00168 (35)	-0.00357 (23)	$0 \cdot 00045$ (34)
C(5)	$0 \cdot 00657$ (12)	0.01625 (30)	$0 \cdot 00698$ (11)	-0.00263 (32)	-0.00098 (20)	$0 \cdot 00075$ (33)
C(6)	$0 \cdot 00646$ (12)	0.01506 (26)	$0.00606(9)$	-0.00095 (31)	-0.00007 (20)	$0 \cdot 00333$ (29)
C(7)	0.00562 (10)	$0 \cdot 01586$ (25)	0.00457 (8)	0.00023 (29)	-0.00032 (16)	$0 \cdot 00147$ (28)
C(8)	$0 \cdot 01194$ (20)	0.02387 (46)	$0 \cdot 00826$ (14)	$0 \cdot 01173$ (56)	$0 \cdot 00270$ (31)	-0.00226 (47)
C(9)	0.01068 (18)	0.01760 (40)	$0 \cdot 01007$ (16)	0.00082 (44)	-0.00218 (32)	-0.00494 (42)
C(10)	$0 \cdot 00708$ (12)	0.01812 (31)	$0 \cdot 00581$ (10)	$0 \cdot 00153$ (36)	-0.00252 (19)	-0.00053 (31)
C(11)	$0 \cdot 00620$ (11)	$0 \cdot 01682$ (30)	0.00484 (8)	-0.00174 (31)	0.00012 (18)	-0.00021 (27)
$\mathrm{N}(12)$	$0 \cdot 00958$ (14)	$0 \cdot 02618$ (43)	$0 \cdot 00826$ (13)	$0 \cdot 00205$ (43)	-0.00611 (24)	$0 \cdot 00154$ (37)
N(13)	$0 \cdot 01041$ (14)	$0 \cdot 02385$ (35)	$0 \cdot 00593$ (9)	-0.00749 (41)	$0 \cdot 00093$ (21)	$0 \cdot 00210$ (34)
H(14)	$2 \cdot 00$ (37)					
H(15)	$3 \cdot 42$ (52)					
$\mathrm{H}(16)$	11.58 (151)					
H(17)	$3 \cdot 98$ (56)					
H(18)	2.32 (39)					
H(19)	$2 \cdot 62$ (42)					
H(20)	$3 \cdot 16$ (46)					
H(21)	$5 \cdot 01$ (60)					
H(22)	6.70 (76)					
H(23)	1.88 (37)					

from the final cycles. The R value including all observed reflections, but including only those unobserved ones for which $\left|F_{\mathrm{c}}\right|$ exceeds $\left|F_{\min }\right|$, is 3.9%.

Final structural parameters and their standard deviations are given in Tables 3 and 4. Standard deviations are those obtained by inversion of the 9×9 and 4×4 matrices. The final value of $\Sigma \mathrm{w}|\Delta F|^{2} /(n-s)$ is $11600 / 926$ or over 12. This large value indicates probably that the 1% error in the time-dependent scale factor is somewhat too low and more strongly that the refinement is not finished. The largest errors in the final ΔF map were associated with the methyl groups. These are certainly undergoing large torsional oscillations or hindered rotation and to that extent have been incorrectly treated. Further change in these atoms is unlikely to affect the results described thus far, however.

Table 5 gives the magnitudes and directions of the principal axes of the heavy-atom thermal ellipsoids at the conclusion of the extended refinement procedure. Comparison of these with corresponding figures from the non-bonding refinement showed an average decrease in magnitude of about 5%, although some principal B values remained unchanged or even increased slightly. This average decrease is a proper consequence of using form factors describing a bonded electron distribution which is explicitly more diffuse than that of free atoms. The scale factor for $F_{\text {obs }}$ increased 3% during the bonded-atom refinement.

Discussion of the structure

An illustration of the structure viewed along [010] appears in Fig.3. It should be remembered that the po-
sitions shown for hydrogen atoms are most probable positions only. Large motion in these atoms is evident from the thermal parameters and the final difference map. The packing is apparently dominated to a high degree by $\mathrm{C}-\mathrm{N}$ dipoles. Cyano group $\mathrm{C}(10)-\mathrm{N}(12)$ and similar groups related by the screw axes parallel to b form the slightly tilted rungs of a ladder with C... N separations of 3.42 and $3.71 \AA$. The former distance is close to values usually found in stacks of aromatic rings. The $\mathrm{C}(11)-\mathrm{N}(13)$ group of the same screw-axis related molecule is so arranged that $\mathrm{C}(11)$ is considerably closer to $\mathrm{N}(12)(3.26 \AA)$ than is $\mathrm{C}(10)$. This shorter contact probably represents an aspherical van der Waals shell for the nitrogen atom rather than any unusual intermolecular interaction. All other contacts are normal. It is interesting to note, in view of the probable similarity of the structure of $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2}$, the unmethylated dicyanonorcaradiene, to that described here, that the methyl groups in this structure have no close contacts and thus are not determinative in packing.

Molecular dimensions are shown in Fig. 4 and interbond angles in Fig. 5. The HCH and HCC angles in the methyl groups range from 95° to 129° because of the poorly defined hydrogen positions. The variation in dimensions of three-membered rings with substituents that is found by comparing this material with $6,6-$ diphenyl-3,3-diethyl-3-azabicyclo[3.1.0]hexane bromide monohydrate (Ahmed \& Gabe, 1964) is interesting to note. In the present material, two bonds are longer (1.554 and $1.558 \AA$) and one shorter ($1.501 \AA$) than the C-C bonds in cyclopropane ($1.510 \pm 0.002 \AA$ Bastiansen, Fritsch \& Hedberg, 1964), whereas in the com-

Fig. 3. A [010] view of the structure, showing the packing arrangement and intermolecular contacts. The methyl hydrogen atoms are shown in their most probable positions and in fact undergo hindered rotation or large libration.
pound studied by Ahmed \& Gabe all three bonds are within $\pm 0.006 \AA$ of $1.520 \AA$. Flygare, Narath \& Gwinn (1962) report that in 1,1-dichlorocyclopropane all C-C bonds are equal to $1.533 \pm 0.004 \AA$. The 'abnormal' bond lengths in ethylene oxide ($\mathrm{C}-\mathrm{C}$ is $1.472 \AA$ and $\mathrm{C}-\mathrm{O}$ is $1.436 \AA$) and in ethyleneimine ($\mathrm{C}-\mathrm{C}$ is $1.480 \AA$ and $\mathrm{C}-\mathrm{N}$ is $1.488 \AA$) (both references Sutton, 1958) also verify the variation in bond lengths in these small rings according to substituents and ring components. This variation is suggestive of a valuable probe of electronegativity or of conjugative properties of substituents. It should be noted that all bonds adjacent to the cyclopropane ring are shortened in the norcaradiene, paralleling a trend generally seen (Bent, 1961). The two $\mathrm{C}_{s p^{3}-\mathrm{C}_{s p^{2}} \text { bonds average } 1.480 \AA \text { vs the } 1.510 \AA \text { average }{ }^{\circ} \mathrm{f}}$ found by Brown (1959). $\mathrm{C}_{s p^{3}-\mathrm{C}_{s p}}$ values average $1.436 \AA$ vs $1.456 \AA$ given by Brown. This shortening of external bonds is in line with the rehybridization

Fig.4. Interatomic distances. Standard deviations are approximately $0.0027 \AA$ in C-C bonds and $0.05 \AA$ in C-H bonds.

Fig. 5. Bond angles. Standard deviations are approximately $0 \cdot 1^{\circ}$ in CCC angles and 2° in CCH angles.
(from $s p^{3}$) expected for the 'bent' bonds in threemembered rings (see Coulson \& Moffitt, 1949, for example).

The three-membered ring is inclined at an angle of 71.9° to the plane of $C(1), C(2), C(5)$, and $C(6)$ in the present structure, compared with an analogous angle of 65.0° in the azabicyclohexane. The cyclohexadiene ring is folded at an angle of 4.2° along the $\mathrm{C}(2)-\mathrm{C}(5)$ axis, with $\mathrm{C}(3)$ and $\mathrm{C}(4)$ being moved toward $\mathrm{C}(7)$. Methyl carbon atoms $C(8)$ and $C(9)$ are displaced in the opposite direction so that they are 0.06-0.11 \AA from the plane defined by either half of the cyclohexadiene ring. Several least-squares planes (Blow, 1960) and deviations from them of pertinent atoms are listed in Table 6. The molecule exhibits small but significant distortions from C_{s} symmetry; these are probably caused by the asymmetric environment.

Table 6. Various least-squares planes with contributing weights W and deviations Δ
Plane 1: $0.74732 x+0.48845 y-0.45048 z=1.0145$ 2: $0.72803 x+0.49182 y-0.47758 z=0.8177$ 3: $0.77314 x+0.47290 y-0.42263 z=1.2290$

	W_{1}	Δ_{1}	W_{2}	Δ_{2}	W_{3}	Δ_{3}
C(1)	6	$-0.052 \AA$	6	-0.004 \AA		$-0.101 \AA$
C(2)	6	-0.006	6	0.002	6	0.001
C(3)	6	-0.052		-0.085	6	-0.002
C(4)	6	-0.040		-0.082	6	0.002
C(5)	6	0.007	6	-0.002	6	-0.001
C(6)	6	-0.034	6	0.004		-0.091
C(8)	6	0.095		$0 \cdot 114$		$0 \cdot 109$
C(9)	6	0.081		0.064		0.064
$\mathrm{H}(18)$		-0.082		-0.138		0.001
H(19)		-0.022		-0.095		0.051

Plane 4: $0.38390 x-0.38405 y+0.83972 z=3.8444$

$$
5: 0.21923 x-0.85571 y-0.46872 z=-2.1197
$$

	W_{4}	Δ_{4}	W_{5}	Δ_{5}
$\mathrm{C}(1)$	6	$0 \AA$		$0.704 \AA$
$\mathrm{C}(6)$	6	0		-0.796
$\mathrm{C}(7)$	6	0	6	-0.005
$\mathrm{C}(10)$		-1.223	6	0.002
$\mathrm{C}(11)$		1.201	6	0.009
$\mathrm{~N}(12)$		-2.206	7	-0.001
$\mathrm{~N}(13)$		2.168	7	-0.004

Some remarks about the accuracy of the measurements of bonds and especially of the cyclopropane bent bonds seem in order. The π-bonds associated with $C(2)-C(3), C(4)-C(5)$, and the cyano groups could not be seen; it is also doubtful that use of different σ-bond form factors for the various $\mathrm{C}-\mathrm{C}$ bonds and the $\mathrm{C}-\mathrm{N}$ bonds would be significant in the present case. Effects of thermal motion are quite large compared with the bonding effect, and it seems that it would be necessary to use data collected at much lower temperatures before such details as exact hybridization and π-bonds (of lower electron density than σ-bonds) could be measured accurately. On the other hand, considerable improvement in the difference function ($\varrho_{o}-\varrho_{c}$) and in the R value followed introduction of σ-bonds, bent in the case of the cyclopropane ring. Observation of at least
the gross presence of these bonds seems certain. A limit of $20 \pm 10^{\circ}$ for bending of the cyclopropane bonds seems reasonable. It might reasonably be argued that bending will not be equal in all bonds. The simplest case of equal bending is all that can be considered with the present data. Bending of less than 20° in one or two bonds would require greater bending in the remainder, to accord with the difference map.

The author is grateful to Dr E. Ciganek for bringing this novel material to his attention and for a sample of crystals. Very helpful conversations with Dr R. E. Marsh of the California Institute of Technology and Dr C. T. Prewitt of this laboratory are gratefully acknowledged.

References

Ahmed, F. R. \& Gabe, E. J. (1964). Acta Cryst. 17, 603.
Bastiansen, O., Fritsch, F. N. \& Hedberg, K. (1964). Acta Cryst. 17, 538.
Bent, H. A. (1961). Chem. Reviews, 61, 275.

Blow, D. M. (1960). Acta Cryst. 13, 168.
Brown, M. G. (1959). Trans. Faraday Soc. 55, 694.
Ciganek, E. (1965). J. Amer. Chem. Soc. 82, 652.
Coulson, C. A. \& Moffitt, W. E. (1949). Phil. Mag. (Ser. 7) 40, 1.
Flygare, W. H., Narath, A. \& Gwinn, W. D. (1962). J. Chem. Phys. 36, 200.

Fritchie, C. J., Jr. (1966a). Acta Cryst. In the press.
Fritchie, C. J., Jr. (1966b). To be published.
Furnas, T. (1956). Single Crystal Orienter Instruction Manual, Milwaukee: General Electric Co.
Lipson, H. \& Cochran, W. (1957). The Determination of Crystal Structures (Vol.III, The Crystalline State, ed. W. L. Bragg), London: Bell.

McWeeny, R. (1951). Acta Cryst. 4, 513.
McWeeny, R. (1952). Acta Cryst. 5, 463.
McWeeny, R. (1953). Acta Cryst. 6, 631.
McWeeny, R. (1954). Acta Cryst. 7, 180.
Sutton, L. E. (1958). Tables of Interatomic Distances and Configuration in Molecules and Ions, Sp. Publication No. 11, London: The Chemical Society.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

Thermal Expansion of the Alkali Metal Azides

By R.B.Parsons and A.D. Yoffe
Physics and Chemistry of Solids, Cavendish Laboratory, Cambridge, England

(Received 22 April 1965)

Abstract

The lattice parameters of potassium and sodium azide have been determined as a function of temperature by X-ray diffraction. For potassium azide (tetragonal) the lattice constants at room temperature are significantly higher than those obtained by Hendricks \& Pauling. The coefficients of thermal expansion are sensibly constant over the temperature range $20^{\circ} \mathrm{C}$ to $340^{\circ} \mathrm{C}$. The expansion coefficient along the c axis is more than twice as large as the coefficient along the a axis. A sample of potassium azide $\left(\mathrm{KN}_{3}\right)$ heated at $360^{\circ} \mathrm{C}$ gave a diffraction pattern consistent with a cubic structure (lattice parameter $9.6 \AA$) which is attributed to potassium nitride ($\mathrm{K}_{3} \mathrm{~N}$).

The room temperature diffraction pattern of sodium azide is consistent with a monoclinic C-facecentred lattice, which can however be referred to a pseudo-rhombohedral unit cell close to that described by Hendricks \& Pauling. Above room temperature (about $22^{\circ} \mathrm{C}$) the structure is rhombohedral. In the temperature range - room temperature to $100{ }^{\circ} \mathrm{C}$ - the coefficient of thermal expansion in the direction in which anions and cations alternate is 2.3 times the expansion coefficient in the direction in which they do not. This ratio is very close to that found for potassium azide.

POTASSIUM AZIDE

Introduction

Detailed information is now available on a number of the physical properties of the inorganic azides (Gray, 1963). It seems that the alkali metal azides, and to some extent the alkaline earth azides, are typical ionic solids, the atomic structure and the optical and electrical properties of both perfect and irradiated crystals being closely analogous to those of the alkali halides. The other azides are much less stable and show evidence of a large degree of covalent bonding.

The alkali metal azides thus provide a convenient example of an ionic structure in which one of the ions
is aspherical. Since the study of the lattice dynamics of simple ionic structures containing spherical ions is in a fairly advanced state, it would be interesting to see what differences the presence of a non-spherical ion would make. Apart from measurements of infrared absorption (Bryant, 1963, 1964) no detailed data on this aspect of the azides appear to have been published.

The present work was undertaken to try to throw light on this point through measurements of thermal expansion, as well as to clarify certain points concerning polymorphic transitions, and the effect of irradiation on the lattice constants. The results could also be of interest in connection with decomposition studies of the azides.

